当前位置:首页 > 教育论文 » 正文

创新教育实践OO格式_创新教育实践毕业OO设计

导读:创新教育实践OO在进行写作的时候,基本上都是需要参考很多资料的,并且通过他人的写作模式或者是思路来借鉴一番,这样自己在OO写作时才会不慌不忙,也有一定的条理性。本文分类为创新教育OO,下面是小编为大家整理的几篇创新教育实践OO范文供大家参考。

教育创新实现统计实践变革的OO

  编者按:本文主要从统计学的基本发展趋势;统计教育的OO进行论述。其中,主要包括:统计创新包括两个方面,一是统计实践的创新;二是统计教育的创新、统计学与实质性学科结合的趋势、统计学是一门通用方OO的科学,是一种定量认识问题的工具、统计学与计算机科学结合的趋势、20年代发展起来的多元统计方法虽然对于处理多变量的种类数据问题具有很大的优越性、统计专业课程建设问题、专业建设考虑的是应当培养什么样的人才和怎样培养这样的人才、教学方法和教学手段的OO、统计学与计算机教学相结合、教学与实际的数据分析相结合、要有一批能用电脑、网络来教学的新型教师等,具体请详见。

  摘要:要培养出新型的21世纪的人才,统计教育必须OO远瞩。本文从统计学的发展趋势谈了统计教育急需OO的几个方面。

  关键词:统计学;发展趋势;统计教育OO

  随着国家创新体系的建立,统计创新工程已经提上议事日程,统计创新包括两个方面,一是统计实践的创新;二是统计教育的创新。创新的基础在于教育,没有统计教育的创新,就谈不上统计实践的创新。准确把握统计学的发展方向与发展形势,培养适应新世纪社会经济发展需要的人才,是统计教育工作者必须面对的问题,本文从统计学的基本发展趋势谈一谈统计教育急需OO的几个方面。

  一、统计学的基本发展趋势

  纵观统计学的发展状况,与整个科学的发展趋势相似,统计学也在走与其他科学结合交融的发展道路。归纳起来,有两个基本结合趋势。

  (一)统计学与实质性学科结合的趋势

  统计学是一门通用方OO的科学,是一种定量认识问题的工具。但作为一种工具,它必须有其用武之地。否则,统计方法就成为无源之水,无用之器。统计方法只有与具体的实质性学科相结合,才能够发挥出其强大的数量分析功效。并且,从统计方法的形成历史看,现代统计方法基本上来自于一些实质性学科的研究活动,例如,最小平方法与正态分布理论源于天文观察误差分析,相关与回归源于生物学研究,主成分分析与因子分析源于教育学与心理学的研究。抽样调查方法源于OO统计调查资料的搜集。历史上一些著名的统计学家同时也是生物学家或经济学家等。同时,有不少生物学家、天文学家、经济学家、社会学家、人口学家、教育学家等都在从事统计理论与方法的研究。他们在应用过程中对统计方法进行创新与改进。另外,从学科体系看,统计学与实质性学科之间的关系绝对不是并列的,而是相交的,如果将实质性学科看作是纵向的学科,那么统计学就是一门横向的学科,统计方法与相应的实质性学科相结合,才产生了相应的统计学分支,如统计学与经济学相结合产生了经济统计,与教育学相结合产生了教育统计,与生物学相结合产生了生物统计等,而这些分支学科都具有"双重"属性:一方面是统计学的分支,另一方面也是相应实质性学科的分支,所以经济统计学、经济计量学不仅属于统计学,同时属于经济学,生物统计学不仅是统计学的分支,也是生物学的分支等。这些分支学科的存在主要不是为了发展统计方法,而是为了解决实质性学科研究中的有关定量分析问题,统计方法是在这一应用过程中得以完善与发展的。因此,统计学与各门实质性学科的紧密结合,不仅是历史的传统更是统计学发展的必然模式。实质性学科为统计学的应用提供了基地,为统计学的发展提供了契机。21世纪的统计学依然会采取这种发展模式,且更加注重应用研究。

  这个趋势说明:统计方法的学习必须与具体的实质性学科知识学习相结合。必须以实质性学科为依据,因此,财经类统计专业的学生必须学好有关经济类与管理类的课程,只有这样,所学的统计方法才有用武之地。统计的工具属性才能够得以充分体现。

  (二)统计学与计算机科学结合的趋势

  纵观统计数据处理手段发展历史,经历了手工、机械、机电、电子等数个阶段,数据处理手段的每一次飞跃,都给统计实践带来OO性的发展。上个世纪40年代第一台电子计算机的诞生,给统计学方法的广泛应用创造了条件。20年代发展起来的多元统计方法虽然对于处理多变量的种类数据问题具有很大的优越性,但由于计算工作量大,使得这些有效的统计分析方法一开始并没有能够在实践中很好推广开来。而电子计算机技术的诞生与发展,使得复杂的数据处理工作变得非常容易,那些计算繁杂的统计方法的推广与应用,由于相应统计软件的开发与商品化而变得更加方便与迅速,非统计专业的理论工作者可以直接凭借商品化统计分析软件来处理各类现实问题的多变量数据分析,而无需对有关统计方法的复杂理论背景进行研究。计算机运行能力的提高,使得大规模统计调查数据的处理更加准确、充分与快捷。目前企业经营管理中建立的决策支持系统(dss)更加离不开统计模型。最近国外兴起的数据挖掘(datOOining,又译"数据掏金")技术更是计算机专家与统计学家共同关注的领域。随着计算机应用的越来越广泛,每年都要积累大量的数据,大量信息在给人们带来方便的同时也带来了一系列问题:信息过量,难以消化;信息真假,难以辨识;信息安全,难以保证;信息形式不一致,难以统一处理;于是人们开始提出一个新的口号"要学会抛弃信息"。人们考虑"如何才能不被信息淹没,而是从中及时发现有用的知识,提高信息利用率?"面对这一挑战,数据挖掘和知识发现(dmkd)技术应运而生,并显示出强大的生命力。数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘是一门交叉学科,它把人们对数据的应用从低层的简单查询,提升到从数据中挖掘知识,提供决策支持。在这种需求牵引下,汇聚了不同领域的研究者,尤其是数据库技术、人工智能技术、统计、可视化技术、并行计算等方面的学者和工程技术人员,投身到数据挖掘这一新兴的研究领域,形成新的技术热点。虽然统计学家与计算机专家关心datOOining的视角不完全相同,但可以说,datOOining与dss一样,使得统计方法与计算机技术的结合达到了一个更高的层次。

  因此,统计学越来越离不开计算机技术,而计算机技术应用的深入,也同样离不开统计方法的发展与完善。这个趋势说明:充分利用现代计算技术,通过计算机软件将统计方法中复杂难懂的计算过程屏障起来,让用户直接看到统计输出结果与有关解释,从而使统计方法的普及变得非常容易。所以,对于财经类统计专业的学生来说,一方面要学好统计方法,但另一方面更加要学会利用商品化统计软件包解决实践中的统计数量分析问题,学好计算机信息系统开发的基本思想与基本程序设计,能够将具体单位的统计模型通过编程来实现,以建立起统计决策支持系统。

  所以统计与实质性学科相结合,与计算机、与信息相结合,这是发展的趋势。了解这一点,再来看我们目前教育中的问题就更加明显了,所以一些课程要OO,教学方式也要OO。以下谈一谈统计教育需要OO的几个方面。

  二、统计教育的OO

  (一)统计专业课程建设问题

  专业建设考虑的是应当培养什么样的人才和怎样培养这样的人才。专业建设的核心问题是课程设置和规范课程内容。课程设置主导学生的知识结构,培养统计理论人才应当设置较多的数学课程,目的是让学生能对各种统计方法有较深刻的理性认识;培养应用统计人才应当设置较多的相关应用领域的专业课程,目的是让学生如何能将统计方OO确地运用到相关领域。例如培养从事经济管理的统计人才,在课程设置上至少应当包括四方面的知识:

  • 1
  • 2
  • 3
  • 后台-系统设置-扩展变量-手机广告位-内容正文底部

    本文标签:统计  统计学  方法

    << 上一篇 下一篇 >>

    • 评论(

    赞助团论文网
    留言与评论(共有 0 条评论)
       
    验证码:

    相关文章

    随机文章

    标签列表

    最近发表

      热门文章 | 最新文章 | 随机文章

    最新留言

    首页 论文知识 教育论文 毕业论文 教学论文 经济学 管理学 职称论文 法学 理学 医学 社会学 物理学 文献 工程论文 学位论文 研究论文

    Powered 团论文网 版权所有 备案号:鄂ICP备2022005557号统计代码

    全站搜索