团论文网
很多朋友对于中学数学XX网和初中数学核心期刊、专业期刊都分别有哪些不太懂,今天就由小编来为大家分享,希望可以帮助到大家,下面一起来看看吧!
最优化概念反映了人类实践活动中十分普遍的现象,即要在尽可能节省人力、物力和时间前提下,争取获得在可能范围内的最佳效果,因此,最优化问题成为现代数学的一个重要课题,涉及统筹、线性规划一排序不等式等内容。
最优化问题不仅具有趣味性,而且由于解题方法灵活,技巧性强,因此对于开拓解题思路,增强数学能力很有益处。
但解决这类问题需要的基础知识相当广泛,很难做到一一列举。因此,主要是以例题的方式让大家体会解决这些问题的方法和经验。
[经典例题]
例1:货轮上卸下若干只箱子,总重量为10X,每只箱子的重量不超过1X,为了保证能把这些箱子一次运走,问至少需要多少辆载重3X的汽车?
[分析]因为每一只箱子的重量不超过1X,所以每一辆汽车可运走的箱子重量不会少于2X,否则可以再放一只箱子。
所以,5辆汽车本是足够的,但是4辆汽车并不一定能把箱子全部运走。例如,设有13只箱子,,所以每辆汽车只能运走3只箱子,13只箱子用4辆汽车一次运不走。
因此,为了保证能一次把箱子全部运走,至少需要5辆汽车。
例2:用10尺长的竹竿来截取3尺、4尺长的甲、乙两种短竹竿各100根,至少要用去原材料几根?怎样截法最合算?
[分析]一个10尺长的竹竿应有三种截法:
(1)3尺两根和4尺一根,最省;
(2)3尺三根,余一尺;
(3)4尺两根,余2尺。
为了省材料,尽量使用方法(1),这样50根原材料,可截得100根3尺的竹竿和50根4尺的竹竿,还差50根4尺的,最好选择方法(3),这样所需原材料最少,只需25根即可,这样,至少需用去原材料75根。
例3:一个锐角三角形的三条边的长度分别是两位数,而且是三个连续偶数,它们个位数字的和是7的倍数,这个三角形的周长最长应是多少厘米?
[分析]因为三角形三边是三个连续偶数,所以它们的个位数字只能是0,2,4,6,8,并且它们的和也是偶数,又因为它们的个位数字的和是7的倍数,所以只能是14,三角形三条边最大可能是86,88,90,那么周长最长为868890=264厘米。
例4:把25拆成若干个正整数的和,使它们的积最大。
[分析]先从较小数形开始实验,发现其规律:
把6拆成33,其积为33=9最大;
把7拆成322,其积为322=12最大;
把8拆成332,其积为332=18最大;
把9拆成333,其积为333=27最大;……
这就是说,要想分拆后的数的乘积最大,应尽可能多的出现3,而当某一自然数可表示为若干个3与1的和时,要取出一个3与1重合在一起再分拆成两个2之和,因此25可以拆成333333322,其积3722=8748为最大。
例5:A、B两人要到沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可携带一个人24天的食物和水,如果不准将部分食物存放于途中,问其中一个人最远可以深入沙漠多少千米(要求最后两人返回出发点)?如果可以将部分食物存放于途中以备返回时取用呢?
[分析]设A走X天后返回,A留下自己返回时所需的食物,剩下的转给B,此时B共有(48-3X)天的食物,因为B最多携带24天的食物,所以X=8,剩下的24天食物,B只能再向前走8天,留下16天的食物供返回时用,所以B可以向沙漠深处走16天,因为每天走20千米,所以其中一人最多可以深入沙漠320千米。
如果改变条件,则问题关键为A返回时留给B24天的食物,由于24天的食物可以使B单独深入沙漠12天的路程,而另外24天的食物要供A、B两人往返一段路,这段路为244=6天的路程,所以B可以深入沙漠18天的路程,也就是说,其中一个人最远可以深入沙漠360千米。
例6:甲、乙两个服装厂每个工人和设备都能全力生产同一规格的西服,甲厂每月用的时间生产上衣,的时间生产裤子,全月恰好生产900套西服;乙厂每月用的时间生产上衣,的时间生产裤子,全月恰好生产1200套西服,现在两厂联合生产,尽量发挥各自特长多生产西服,那么现在每月比过去多生产西服多少套?
[分析]根据已知条件,甲厂生产一条裤子与一件上衣的时间之比为2:3;因此在单位时间内甲厂生产的上衣与裤子的数量之比为2:3;同理可知,在单位时间内乙厂生产上衣与裤子的数量之比是3:4;,由于,所以甲厂善于生产裤子,乙厂善于生产上衣。
两厂联合生产,尽量发挥各自特长,安排乙厂全力生产上衣,由于乙厂生产月生产1200件上衣,那么乙厂全月可生产上衣1200=2100件,同时,安排甲厂全力生产裤子,则甲厂全月可生产裤子900=2250条。
为了配套生产,甲厂先全力生产2100条裤子,这需要21002250=月,然后甲厂再用月单独生产西服900=60套,于是,现在联合生产每月比过去多生产西服
(210060)-(9001200)=60套
例7今有围棋子1400颗,甲、乙两人做取围棋子的游戏,甲先取,乙后取,两人轮流各取一次,规定每次只能取7P(P为1或不超过20的任一质数)颗棋子,谁最后取完为胜者,问甲、乙两人谁有必胜的策略?
[分析]因为1400=7200,所以原题可以转化为:有围棋子200颗,甲、乙两人流每次取P颗,谁最后取完谁获胜。
[解]乙有必胜的策略。
[说明](1)此题中,乙是“后发制人”,故先取者不一定存在必胜的策
,关键是看他们所面临的“情形”;
(2我们可以这样来分析这个问题的解法,将所有的情形--剩余棋子的颗数分成两类,第一类是4的倍数,第二类是其它。
若某人在取棋时遇到的是第二类情形,那么他可以取1或2或3,使得剩下的是第一类情形,若取棋时面临第一类情形,则取棋后留给另一个人的一定是第二类情形。所以,谁先面临第二类情形谁就能获胜,在绝大部分双人比赛问题中,都可采用这种方法。
例8有一个80人的旅游团,其中男50人,女30人,他们住的旅馆有11人、7人和5人的三种房间,男、女分别住不同的房间,他们至少要住多少个房间?
[分析]为了使得所住房间数最少,安排时应尽量先安排11人房间,这样50人男的应安排3个11人间,2个5人间和1个7人间;30个女人应安排1个11人间,2个7人间和1个5人间,共有10个房。
数学XX可以到相关期刊去发表。
具体有关数学的期刊名单如下:
《数学XX》、《数学学习》、《数学的实践与认知》、《高等数学研究》、《数学学习与研究》、《数学理论与应用》、《经济数学》、《数学》、《应用数学》、《中国数学教育》、《应用数学》、《高校应用数学学报》、《数学进展》、《数学季刊》、《计算数学》等刊物。
我国数学类的核心刊物主要有:
1、数学学报。
2、数学研究与评论。
3、数学年刊。
4、应用数学学报。
5、计算数学。
6、数学进展。
7、数学XX。
8、系统科学与数学。
9、应用数学。
10、应用概率统计。
11、高等学校计算数学学报。
12、高校应用数学学报。
13、系统工程理论与实践。
14、数学的实践与认识。
15、数学物理学报。
16、数理统计与应用概率。
17、运筹学学报。
18、工程数学学报。
19、系统工程。
数学期刊数学专业刊物。它是传播、交流数学科学学术思想,并及时反映数学科学研究成果的有力工具。它的出现是数学科学事业发展的需要,反过来又有力地促进了数学事业的发展。1、进行选题:写数学小XX最重要的一个步骤就是确定我们所研究的对象,初中小XX的选择可以是一些比较简单的方向,例如对某一特定数学问题的讨论和引申或者是对生活中存在的有趣数学现象的观察与分析;
2、查阅资料,撰写XX:确定选题后,可以查阅相关的资料,并将这些资料信息整合应用到文章中,从而使得文章内容更加丰富。在撰写XX时要注意正文结构应具备论点、论据、论证和结论四个要素,一篇质量高的XX应是论点明确新颖、论据充分真实、论证有力科学、结论正确的。
END,本文到此结束,如果可以帮助到大家,还望关注本站哦!
后台-系统设置-扩展变量-手机广告位-内容正文底部 |
首页 论文知识 教育论文 毕业论文 教学论文 经济学 管理学 职称论文 法学 理学 医学 社会学 物理学 文献 工程论文 学位论文 研究论文
Powered 团论文网 版权所有 备案号:鄂ICP备2022005557号统计代码
全站搜索