团论文网
本篇文章给大家谈谈大一上学期高等数学XX,以及大学数学XX范文对应的知识点,文章可能有点长,但是希望大家可以阅读完,增长自己的知识,最重要的是希望对各位有所帮助,可以解决了您的问题,不要忘了收藏本站喔。
工科一般是用不到的,文科也一样
大学数学好学吗?实话实说,如果没有一个比较好的脑子,还是不要去学数学专业。就在大一开始要学所有的基础课程,数学分析,高等代数,解析几何等。高代和解几还比较简单,但数学分析要学一年半,而且可以说比较难。
高代学一年,解几学半年。以后还有数学分析选讲,概率论之类的数学课程。如果是正规的学校,这门课程是重要的基础课程,一般都会管得比较严!
如果不是学数学专业的,就只要在大一的时候学高等数学,还比较简单。如果是文科类的,就不用学数学了。至于枯燥,就看你学的好不好,学的好什么都不怕,也不枯燥。学不下去,那就嘿嘿,不用我多说了吧,关键要自己努力。
大学数学的学习方法
一、大学数学学习中最重要的是进行数学素质与运算能力的培养。
何为数学素质?它是一种准确理解深奥的数学概念,对实际问题建立数学模型,准确找到求解的正确途径的意识。这种素质需要在学习数学中逐步培养、磨练。
数学问题的最终解决,总离不开运算,这是基本功。欧拉的最短XX和高斯的“正十七边形可用直尺、圆规作出”,是他们有着超乎寻常的运算能力,才能在十几岁的年龄取得杰出的数学成就。
二、注重大学数学特点
大学数学有以下三个显着特点。
1、精确化。数学从诞生之日起,以严密、简洁、精确而着称。而《高等数学》,更是集中体现了这一风格,整个分析数学都建立在极限的精确语言之上。这种语言的精确性,可以说是字字千金,它经历了一百余年的提练。
2、抽象。高等数学中的一些概念具有一定的抽象性,如极限、可导、可积等概念。设想一下,如果数学没有了抽象性,总是研究一个一个的具体问题,那么数学的发展能有今天这样繁荣吗?那我们的数学科学岂不是成了一本厚厚的习题解。试想一下,欧拉不经过抽象思维,能把“七桥问题”转化成“一笔画”问题吗?
抽象的主要表现是:定义了一系列新的概念。XX说过“自然科学的生命是概念”,概念一般从实际事物中经过抽象而得到,但它又较原实际问题包含更丰富的内涵。可以这样说,大学数学学习成败的一个重要方面,是对概念的理解与掌握。
学习抽象概念,要抓住下面几个环节。
1、记住一两个引入概念的实例,避免出现抽象旋晕症;
2、记住一两个与概念相悖的反例,从多侧面加深对概念的理解;
3、弄清概念与其它已有概念的关系,避免将诸多概念分割成孤零零的教条,将诸概念之间的关系,用例子、定理、公式联系起来。
3、丰富的技巧
这方面的能力,需要用我们前面所提到过的数学方法去进行创造性的工作,也可以通过向前人与书本学习,获得这方面的能力。但必须指出,任何高超的技巧离不开基本运算技能的辅助。
三、大学数学学习的方法
1、如何听课
大学课程的讲课学时较少,主要靠学生自学。因此,一节课的内容往往相当多,讲课的节奏也较快,如何有效地掌握课堂教学内容,有几点忠告可供大学参考。
①、“讲得学生人人都能听懂的教师,不是好教师”,这是美国大学教授们所奉行的观点,也是大学课堂的特点。因为将知识分解,讲得太细,会使学生获取知识的能力下降,也不利于学生的自学能力的培养。因此,不要企望上课时能把全部内容都听懂,更不要在某一地方卡壳之后,中止听课。
②、上课主要听概念,尤其注意教师强调的地方,这往往是容易出现错误的地方;听定理证明的方法,而不要过分拘泥于听懂证明过程中的每一个细小步骤,但对主要步骤要听懂,下课之后再自行补充。
③、一堂课至始至终保持注意力不太容易做到,因此,建议同学们把主要精力集中在概念讲述、定理证明方法、易出错地方的介绍,学会合理分配精力与体力。
2、看书
①、建议你选定一本习题指导、疑难问题解答、复习资料作为你的参考书。
②、读书的特点是:多则惑,少则得。建议你在读书中绐终抓住几个主要概念、定理,尝试着用它们派生出其它的概念与结论。这也是华罗庚先生所提倡的读书方法。即:把书先读“薄”,将知识进行分类,浓缩。当你把一本书读“薄”这一过程完成之后,你应该尝试着再把书读“厚”,把你的体会、你从参考书上学来的例子、新的证明方法等等添加进去,使之丰富起来,使书真正成为你自已“写出来”的书一样。这个读“厚”的过程,往往需要我们象侦探一样,去猜想、探索著书者的思想,去翻一翻他们的草稿纸。这个阶段可以说是你读书的高级阶段,是你真正学习数学方法、掌握数学技巧的主要来源。如果你不经过这个阶段,仅仅只是把书上的那些简洁得不能再简洁的文字,由此及彼地顺着看懂了,并没有学到数学“活的思想”。
3、练习
①、对概念题的练习应该是最重要的,建议你多花点时间。
②、对基本的运算题应多练习,并注意准确性与速度,少看书后的参考解答,靠答案的辅助提示,做对运算题容易在考试中栽跟斗。
③、对做错的练习不要放过,记住,你的错误往往正是这道题检测你时所预先设计的,你要引起警觉。
综上所述,只要用心,掌握方法,刻苦钻研,学好高数也能做到轻松自如的。
01
你必须在你写XX之前,确定你自身要有很强的学科知识,你要知道很多的关于这方面的东西。你要学会在你知道的知识里去总结,不断的寻找这其中的规律。
02
你在写XX的过程中总会遇到很多不懂的问题,你这时应该去问你的老师或者同学。他们会给你很多的建议,说不定会突然打开你的想法,然后灵感就来了。
03
当然你也要学会利用那些成功者的经验,你可以到知网等一些学术类网站上去查找数学类的XX。你多看几篇之后,说不定就会掌握一定的技巧。但是记住不要去抄。
04
除了网上的资料运用,你还要学会利用图书馆的东西。因为图书馆里的东西有的电脑上没有,你要学会一个人静下来慢慢寻找怎么去总结。你要不断的充实自己,让自己更强大,当然也要保持一个良好的心态。
希望我的回答对你有帮助哦??
数学与生活
自从懂事以来,数学就已进入了我们的生活,数学无处不在影响着我们的生活,指引着智慧的方向,陪伴我们度过学习与成长的各个阶段。
数学是一门给人智慧、让人聪明的学科,在数学的世界中,我们可以探索以前所不知道的神秘,在这个过程中我们变得睿智、变得聪明。
由于以前选择了文科,所以到大学才接触到危机分的知识,也开始了对微积分的探索,现在可以说是略知一、二了,在此期间间间的了解到微积分的美好,以及新引力的强大。但学习微积分的过程是困难与艰辛的,与此同时,我也了解到——数学是一种寻求众所周知的公理法思想的方法,这种方法包括明确的表述出将要讨论的概念的含义,以及准确的表述出作为推理基础的公设。具有极其严密的逻辑思维能力的人从这些定义和公设出发,推导出结论。同时数学是一门需要创造性的科学,而数学的这些创造性的动力往往来自于生活。反过来,数学的这些创造性地成果往往又作用于生活的各个方面。例如,商业和金融事务、航海和历法的计算、桥梁、水坝、教堂和供电的建造、作战XX和工事的设计,以及许多人类的需要。与此同时,数学又能对这些问题给出最完满的解决。在我们高速发展的社会中,数学被当作普遍工具的事实更是毋庸置疑的。
在我们的日常生活中,微积分确确实实的存在着,只是我们缺少善于发现的精神而已。比如说,我们在养花,而花瓶中水过多了,我们这时就要倒出部分水,这是上活中的公式就产生了,这个问题是:我们要将瓶子倾斜多少度时才能降水倒出一半来?这是微积分就派上用场了。
假设花瓶的纵截面是抛物线
Y=ax^2(a>0)
首先,先算出瓶子直立水满时的体积用一个积分就可以了,结果等于V=h^2/(2a);
第二步,假设倾斜角为,正好倒掉了一半的水,重新建立坐标系,令此时瓶的对称轴为y轴,垂直于瓶的对称轴的射线为x轴,然后将坐标系还原为常规正立的图形,此时瓶里水的横截面图像为抛物线和水面所在直线的公共部分,注意此时水面所在直线与x轴的倾角是刚好为题目所提到的倾斜角(如原图所示,倾斜后的水平面此时与x轴平行,因此水面与瓶的对称轴的夹角为90-,也即在新建坐标系下,水面所在直线与y轴的夹角也为90-,因此它与x轴的夹角为)。
所以可以设该直线方程为
y=tan*x+b
假设直线与抛物线的交点为A(x0,y0),B(sqrt(h/a),h))(左A,右B)(B点的纵坐标显然等于瓶子的高度h),先利用B点坐标求出直线的截距b,然后联立直线与抛物线方程可以求的A点坐标;
第三步,就是求此时瓶中水的体积,可以将图像分为两部分,
一部分是直线y=y0与抛物线所交部分,第二部分是直线y=y0、直线y=tan*x+b及抛物线y=ax^2(a>0)相交部分。第一部分体积为V1=∫*(x^2)dy=∫*y/ady(积分上下限为0和y0);
第二部分体积为V2=∫*((sqrt(y/a)-(y-b)/tan)/2)^2dy(积分上下限为y0和h);因此根据:V1+V2=V/2=*h^2/(4a)=∫*y/ady(积分上下限为0和y0)+∫*((sqrt(y/a)-(y-b)/tan)/2)^2dy(积分上下限为y0和h)可以解得所求值。
这就是数学于生活紧密联系在一起了,如果数学不能和生活紧密联系在一起,那么数学将变得空洞无力。
著名数学家罗素曾说:“数学如果正确看待他,则具有……至高无上的美——正像雕像的美,是一种冷而严肃的美,这种每部石头和我们的天性的微弱的美,这些煤没有绘画或音乐的那些华丽的装饰,它可以纯净到崇高的地步,能够达到严格的只有最伟大的艺术才能显示的那种完美的境地。一种精神上的喜悦,一种精神上的亢奋,一种高于人的意识的,这些是至善至美的标准,能够在诗里得到,也能够在数学里得到”这就表明伟大的人物因为有一双善于发现美的眼睛所以他看到了数学隐藏的魅力。除了创造性和发现,想象也是可以使数学在我们思想中得到升华的。
学了很久的数学了,明卖弄百数学的源远流长于高深莫测,他引领着前进的道路。Hankel,HerXXnn说:数学沿着他自己的道路而无拘无束的前进着,这并不是因为他有什么不受法律约束之类的种种许可证,而是因为数学本来就具有一种由其本性所决定的并且与其存在相符合的XX无益的是数学在生活中独特而不可或缺,失去了数学科技水平将XX。这不是耸人听闻,这是对数学这门使人精密学科的肯定,这是不可置否的。
数学不是规律的发现者,因为它不是归纳。数学也不是理论的缔造者,因为它不是假说。但数学确实规律和假说的裁判和主宰者,因为规律和假说都要向数学表明自己的主张,然后等待数学的裁判。如果没有数学的认可,则规律不能起作用,理论也不能解释。(来自数学的文化)
数学是重要的,生活不能离开数学,国防发展与科技进步也不能离开数学。在遥远的古代中国是引领世界的,因为那时的勤劳XX已发现了数学算筹、《九章算术》……这都是历史留下来的论据。一个国家的强大离不开数学的精密计算。21世纪的今天中国已傲然屹立于世界民族之林,为了使国际地位不断提升,我们必须坚定的发展研究数学。
五年级上册的数学小XX应该围绕五年级上册数学所涉及的理论、概念、公式及相关的实际应用等内容作文,题目可以取材于教材中所涉及的某一知识点或实践活动,如“分数的加减”、“周长的测量”、“三角形的周长计算”等,小XX应该以这些知识点为主题,从解决数学中的具体问题的实践出发,介绍解决的思路和方法,通过去理解数学思想,发掘数学本质,使读者更深入地理解数学。
关于大一上学期高等数学XX和大学数学XX范文的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
后台-系统设置-扩展变量-手机广告位-内容正文底部 |
首页 论文知识 教育论文 毕业论文 教学论文 经济学 管理学 职称论文 法学 理学 医学 社会学 物理学 文献 工程论文 学位论文 研究论文
Powered 团论文网 版权所有 备案号:鄂ICP备2022005557号统计代码
全站搜索