-
[摘要]当前癌症发病率日渐升高,治疗手段虽不断进步,但化疗作为癌症治疗的重要基石仍在肿瘤防治中起到重要作用。多种化疗药物可造成急慢性周围神经损伤,其中以铂类及紫杉烷类药物为主,周围神经损伤可严重影响患者生存质量及临床治疗,目前仍无确切有效的治疗方案。现有多项临床研究提示针灸对于化疗引起的周围神经损伤具有改善作用,但其机制尚不明确,本文依据目前现有研究从改善氧化应激、抑制神经炎性反应、调节镇痛相关神经递质、调节离子通道等方面探讨化疗导致周围神经病变及针灸干预的机制。
[关键词]针刺;化疗;周围神经病变;机制研究;述评
目前癌症发病率日渐升高,根据预测,2040年每年需要第一疗程化疗的患者人数将从2018年的980万增加到1 500万[1]。化疗诱导的周围神经病变(Chemotherapy-induced Peripheral Neuropathy,CIPN)是多种化疗药物的严重潜在不良反应,其可能影响30%~40%的患者[2]。CIPN可表现为不同程度的感觉、运动和或自主功能障碍,其中以感觉障碍为主,包括麻木、刺痛、触感改变、振动受损、感觉异常等,疼痛作为常见症状可表现为自发的烧灼、射击或电击样疼痛,以及机械性或热性异常性疼痛或痛觉过敏,严重影响患者的生存质量及治疗效果,铂类药物及紫杉烷类药物治疗时CIPN发生率尤为显著[3]。目前尚无有效治疗CIPN的方案,2020年美国临床肿瘤学会(American Society of Clinical Oncology,ASCO)指南推荐用于改善CIPN的药物为度洛西汀,针灸疗法虽被提及但尚缺少有效临床证据[4]。近期多项临床研究表明,针灸治疗在改善CIPN患者疼痛及生活质量方面可发挥疗效,但机制尚未明确[5-6]。本文拟依据现有的相关研究着重总结铂类及紫杉烷类药物所致CIPN发病机制,并探讨针灸干预CIPN的可能机制。
1改善氧化应激
线粒体的损伤及其造成的氧化应激反应是其造成CIPN的关键原因[7]。针对氧化反应,生物体内存在多种抗氧化防御系统,包括超氧化物歧化酶(Superoxide Dismutase,SOD)、过氧化氢酶及谷胱甘肽过氧化物酶(Glutathione Peroxidase,GSH)等多种细胞内抗氧化酶,以及核因子红细胞2相关因子(Nuclear Factor Erythrocyte 2 Associated Factor,Nrf2)等抗氧化蛋白和转录因子[8-9]。铂类药物以DNA为靶点与肿瘤细胞DNA结合形成DNA-铂复合物,进而促使肿瘤细胞凋亡[10]。由于缺少血脑屏障保护,铂剂极易在背根神经节(Dorsal Root Ganglion,DRG)中累积,其与细胞核DNA及线粒体DNA结合进而导致感觉神经元及线粒体损伤。紫杉烷类药物的抗肿瘤核心机制是破坏微管蛋白,在破坏微管蛋白过程中,神经元及mRNA向远端神经元轴突运输受损[11]。这些损伤可导致氧化应激并造成外周神经元及DRG内线粒体膜电位、结构及呼吸链破坏[12],线粒体呼吸功能的破坏造成活性氧(Reactive Oxygen Species,ROS)过量累积。紫杉醇可使机体还原型辅酶Ⅱ氧化酶活性提高,A3腺苷受体激动剂阻断原型辅酶Ⅱ氧化酶激活和氧化还原介导的促炎症途径,可逆转紫杉醇诱导的大鼠机械性异常性疼痛[13],而其处理的大鼠DRG内ROS累积,并伴有SOD反应不足[14],提示紫杉醇诱导CIPN与机体ROS累积过多及氧化酶激活有关。ROS可损伤脂质、蛋白质和DNA进而诱发细胞毒性[8,13],ROS和氧化应激产物进一步增强炎症反应。紫杉醇同时可引起DRG细胞内Nrf2减少,表明外周神经系统的抗氧化活性受损,Nrf2激动剂可增加外周神经元Nrf2、SOD表达并有效减轻紫杉醇导致的疼痛[15]。
针刺治疗可有效提高小鼠体内抗氧化酶的含量[16]。目前有研究表明,在紫杉醇产生的神经性疼痛大鼠模型中,电针刺激内关及间使可通过大量恢复Nrf2-ARE/SOD水平,减少氧化应激产物,并下调DRG中的促炎细胞因子[17]。
如前所述,化疗药物所造成的线粒体结构损伤与CIPN发病联系密切,多项研究表明针刺能够保护线粒体超微结构及维持膜电位从而改善线粒体功能并减少神经元凋亡[18-19]。Zhang Q等[19]针对认知障碍大鼠研究显示,针刺预处理能够保护海马神经元线粒体嵴结构,减少线粒体固缩,并维持线粒体膜电位,从而显著减少了大鼠海马神经元的凋亡率,提示保护线粒体结构同样是改善CIPN的潜在机制。
2抑制神经炎性反应
DRG神经元细胞体被卫星胶质细胞(Satellite Glial Cells,SGCs)的扁平片状细胞所覆盖,而神经干中的轴突则被施旺细胞(Schwann Cells,SCs)所包裹。DRG神经元损伤可激活胶质细胞,激活后的SGCs间及SGCs与神经元间缝隙连接增加,其标记物胶质纤维酸性蛋白(Glial Fibrillary Acidic Protein,GFAP)表达增加,活化的SGCs释放促炎细胞因子白细胞介素-1β(Interleukin-1β,IL-1β)、白细胞介素-6(Interleukin-6,IL-6)、肿瘤坏死因子(Tumor Necrosis Factor,TNF)等,造成神经性疼痛发生[20],星形胶质细胞中腺苷受体(Adenosine Receptors,ARs)的信号传导受腺苷激酶(Adenosine Kinase,ADK)的支配,A3AR亚型的腺苷信号表达可抑制星形胶质细胞活化及炎症反应[21]。铂类药物及紫杉醇均可引起胶质细胞活化,使GFAP增加,进而引起炎性因子释放导致神经炎症,同时抑制脊髓内A3AR腺苷信号表达,使胶质细胞源性的炎症因子过表达[22-23]。除胶质细胞外,铂类药物及紫杉烷类药物还可激活相关通路促使炎症相关因子表达进而引发神经炎性反应。顺铂诱导小鼠DRG内可被TOLL样受体(Toll-like Receptor,TLRs)激活的活化转录因子3(Activated Transcription Factor 3,ATF3)上调,激活核因子κB(nuclear factor kappa-B,NF-κB)通路,导致炎症因子增加,其中TLR4起到重要作用,其可特异性地与顺铂相互作用进而介导炎症,TLRs作为上游靶点可活化如丝裂原激活蛋白激酶(Mitogen-activated Protein Kinase,MAPK)、磷酸肌醇3激酶(Phosphoinositol 3 Kinase,PI3K)、NF-κB和ATF3蛋白等下游信号,引发炎症反应[24-25]。奥沙利铂则可通过诱导巨噬细胞的活化,激活PI3K/雷帕霉素的哺乳动物靶点(Mammalian Targets of Rapa⁃mycin,mTOR)及NF-κB通路,上调IL-1β、IL-6、TNF-α及CX3CL1等炎症因子及趋化因子[26-27]。紫杉醇可直接激活PI3K-mTOR及NF-κB通路,引起IL-1β、IL-6、TNF-α等炎性因子上调,造成神经炎性反应[28]。此外,紫杉醇通过激活DRG中卫星胶质细胞的TLR4受体,促进TNF-α释放[29];DRG中巨噬细胞则可受到TLR9受体调控,紫杉醇可通过激活TLR9促进巨噬细胞TNF-α及趋化因子CXCL1释放,造成神经炎性疼痛[30]。瞬时受体电位(Tran⁃sient Receptor Potential,TRP)通道在CIPN发病中同样起到重要作用,其可以检测大量包括热信号、机械信号和化学信号在内的各类信号。奥沙利铂增强小鼠背根神经节神经元对TRPA1刺激的反应性,同时引起TRPA1对ROS敏化,导致冷敏感疼痛,通过缺氧和细胞质酸化对ROS敏感,同时诱导TRMP8及TRPV1在DRG神经元中高表达,引发疼痛[31]。紫杉醇同样可引起相关TRP通道的高表达,PI3K阻滞剂可有效抑制紫杉醇处理后DRG细胞中PI3K/Akt信号通路,进而减少TRPV1表达,改善紫杉醇导致的热痛觉过敏,提示紫杉醇可通过PI3K通路引起TRPV1的高表达导致CIPN发生,既往的研究同样表明紫杉醇激活TLR4,引起卫星神经胶质细胞释放TNF-α,可增加DRG神经元中TRPA1的表达从而引起神经炎性疼痛[32-33]。大麻素受体2(Can⁃nabinoid Receptor 2,CB2R)促进细胞释放β-内啡肽以及抑制促炎细胞因子的产生,CB2R激动剂可缓解紫杉醇诱发的异常疼痛,并减少脊髓内TNF-α水平[34]。
针对上述通路及相关因子,针灸可能通过抑制表达、下调炎症因子改善药物造成的疼痛及感觉异常。如前所述,TLR4及TRPV1是导致CIPN的重要因素,针刺治疗可通过抑制TLR4及TRPV1进而缓解CIPN的疼痛超敏反应。在紫杉醇所引起的神经性疼痛大鼠模型中,在双侧足三里及昆仑电针治疗30 min/d,持续1周后可有效改善紫杉醇诱导的痛觉过敏,同时,电针可抑制DRG神经元中的TRPV1和TLR4活性及其下游信号,并抑制脊髓中的神经胶质细胞激活[35]。与之类似,双侧足三里电针治疗
2周后可抑制脊髓内星形胶质细胞的活性,并下调脊髓及血清内TLR4/NF-κB信号及促炎细胞因子水平,从而显著改善紫杉醇诱导的在大鼠机械性异常性疼痛[36]。电针治疗还可通过激活外周CB2R,抑制NLRP3炎性小体,下调IL-1β等炎性因子,改善紫杉醇造成的神经病理性疼痛[37]。
3调节镇痛相关神经递质
除改善氧化应激及神经炎性反应外,针刺治疗同样可以直接调节镇痛相关神经递质从而缓解CIPN。
电针可抑制脊髓中的Ca2+/钙调素依赖性蛋白激酶Ⅱ(Ca2+/Calmodulin-dependent Protein KinaseⅡ,CaMKⅡ)来减轻紫杉醇诱导的神经性疼痛,电针所产生的镇痛作用和电针抑制的CaMKⅡ可被5-羟色胺1A(5-hydroxytryptamine 1A,5-HT1A)受体拮抗剂逆转,提示电针可通过激活5-HT1A受体而发挥镇痛作用改善CIPN[38]。同时,电针可通过激活阿片类受体、肾上腺素受体发挥镇痛作用。电针刺激足三里联合低剂量加巴喷丁可针对紫杉醇诱导的CIPN发挥相对长效的镇痛作用;针对冷觉异常性疼痛,阿片类受体拮抗剂可阻断镇痛作用,阿片受体拮抗剂及肾上腺素α2受体拮抗剂则可阻断针对机械性异常性疼痛的镇痛作用[39]。
4调节离子通道
CIPN的发生与其他离子通道也有密切关系。NaⅤ1.7在DRG神经元内的外周体细胞和内脏感觉神经元中表达,其激活与慢性疼痛密切相关,NaⅤ1.8位于游离神经末梢,在DRG神经元中表达,可接收外部刺激并整合信号,且其可被p38-MAPK通路激活,促进动作电位造成感觉异常及疼痛[28]。研究显示抑制钠离子通道NaⅤ1.7、NaⅤ1.8通道活性可有效阻断奥沙利铂造成的疼痛[40]。奥沙利铂增加大鼠感觉神经元中与电压门控钠离子通道相互作用的复合动作电位的振幅和持续时间,并诱导运动轴突NaⅤ.失活的可逆性,缓解其造成异常疼痛[41]。紫杉醇同样引起NaⅤ1.7、NaⅤ1.8的过表达,阻断NaV 1.7通道,抑制CIPN大鼠模型DRG神经元的自发动作电位,抑制DRG神经元钠离子门控通道NaⅤ1.8β1亚基可减轻紫杉醇诱导的疼痛[42-43]。
针对NaⅤ的研究表明电针刺激可减少NaⅤ1.7、NaⅤ1.8通道蛋白表达及电压门控钠电流,提示针灸可能通过钠离子通道改善CIPN,具体机制尚待进一步研究[44-45]。
5小结
目前CIPN病因尚未完全明确,其治疗亦未有有效方案。CIPN的发生会严重影响患者的生存质量,导致临床医师调整用药剂量或修改治疗方案,影响患者的治疗及预后。部分临床研究提示针灸治疗在改善CIPN方面具有极大潜力,但其临床应用并不普及,一方面由于目前循证医学证据尚不足,另一方面针对针灸干预的机制亦不明确。本文从改善线粒体功能及氧化应激、抑制神经炎性反应、调节镇痛相关神经递质、调节离子通道等方面探讨了针灸干预的可能机制,为进一步的研究提供一定的依据及思路。
此外,目前各项研究未有标准化针灸方案,取穴不同是否会影响治疗针灸的疗效仍待探索,不同穴位其周围组织生理结构不同及刺激强度或影响其发挥作用的机制,因此不同穴位配伍同样可能干预其发挥作用的途径。针对针刺操作,针灸治疗包括电针、手针、温针等多种方式,不同操作方式是否对作用的发挥产生影响同样是值得继续深入研究的方向,以期更好地将针灸疗法应用于临床。
[参考文献]
[1]Wilson BE,Jacob S,Yap ML,et al.Estimates of global chemotherapy demands and corresponding physician workforce requirements for 2018 and 2040:A population-based study[J].Lancet Oncol,2019,20(6):769-780.
[2]Mezzanotte JN,Grimm M,Shinde NV,et al.Updates in the treatment of chemotherapy-induced peripheral neu⁃ropathy[J].Current Treatment Options in Oncology,2022,23(1):29-42.
[3]MichalováZ,SzékiováE,Blaško J,et al.Prevention and therapy of chemotherapy-induced peripheral neuropathy:A review of recent findings[J].Neoplasma,2023,70(1):15-35.
[4]Loprinzi CL,Lacchetti C,Bleeker J,et al.Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers:ASCO guide⁃line update[J].J Clin Oncol,2020,38(28):3325-3348.
[5]Friedemann T,Kark E,Cao N,et al.Acupuncture im⁃proves chemotherapy-induced neuropathy explored by neurophysiological and clinical outcomes-The random⁃ized,controlled,cross-over ACUCIN trial[J].Phytomedi⁃cine,2022,104:154294.
[6]Alessandro EG,Nebuloni Nagy DR,de Brito CMM,et al.Acupuncture for chemotherapy-induced peripheral neu⁃ropathy:a randomised controlled pilot study[J].BMJ Sup⁃portive&Palliative Care,2022,12(1):64-72.
[7]张红颖,吴艾平.铂类导致周围神经毒性机制的研究进展[J].重庆医学,2023,52(6):935-940.
[8]Teleanu DM,Niculescu A,Lungu II,et al.An overview of oxidative stress,neuroinflammation,and neurodegen⁃erative diseases[J].International Journal of Molecular Sci⁃ences,2022,23(11):5938.
[9]Forman H J,Zhang H.Targeting oxidative stress in dis⁃ease:promise and limitations of antioxidant therapy[J].Nat Rev Drug Discov,2021,20(9):689-709.
[10]Rottenberg S,Disler C,Perego P.The rediscovery of platinum-based cancer therapy[J].Nat Rev Cancer,2021,21(1):37-50.
[11]Wozniak KM,Vornov JJ,Wu Y,et al.Peripheral neuropa⁃thy induced by microtubule-targeted chemotherapies:In⁃sights into acute injury and long-term recovery[J].Cancer Research,2018,78(3):817-829.
[12]Zhao Y,Yu X,Gao J,et al.Acupuncture for paclitaxel-induced peripheral neuropathy:A review of clinical and basic studies[J].Journal of Pain Research,2021,14:993-1005.
[13]Bae EH,Greenwald MK,Schwartz AG.Chemotherapy-induced peripheral neuropathy:Mechanisms and thera⁃peutic avenues[J].Neurotherapeutics,2021,18(4):2384-2396.
[14]Duggett NA,Griffiths LA,McKenna OE,et al.Oxida⁃tive stress in the development,maintenance and resolu⁃tion of paclitaxel-induced painful neuropathy[J].Neuro⁃science,2016,333:13-26.
[15]Singh J,Saha L,Singh N,et al.Study of nuclear factor-2 erythroid related factor-2 activator,berberine,in pa⁃clitaxel induced peripheral neuropathy pain model in rats[J].Journal of pharmacy and pharmacology,2019,71(5):797-805.
[16]于冬冬,牛云云,刘玉璐,等.基于氧化应激反应针灸改善顺铂小鼠肝损伤的机制[J].辽宁中医杂志,2020,47(11):198-200,227.
[17]Zhao X,Liu L,Wang Y,et al.Electroacupuncture en⁃hances antioxidative signal pathway and attenuates neu⁃ropathic pain induced by chemotherapeutic paclitaxel[J].Physiological Research,2019,68(3):501-510.
[18]望庐山,梁凤霞,李佳,等.标本配穴电针干预对慢性心肌缺血模型大鼠凋亡相关蛋白表达与线粒体超微结构的影响[J].中华中医药杂志,2019,34(3):1160-1165.
[19]Zhang Q,Li Y,Yin C,et al.Electro-acupuncture pre⁃treatment ameliorates anesthesia and surgery-induced cognitive dysfunction via inhibiting mitochondrial in⁃jury and neuroapoptosis in aged rats[J].Neurochem Res,2022,47(6):1751-1764.
[20]Hanani M,Spray DC.Emerging importance of satellite glia in nervous system function and dysfunction[J].Nat Rev Neurosci,2020,21(9):485-498.
[21]Singh AK,Mahalingam R,Squillace S,et al.Targeting the A3 adenosine receptor to prevent and reverse chemotherapy-induced neurotoxicities in mice[J].Acta Neuropathol Commun,2022,10(1):11.
[22]Singhmar P,Huo X,Li Y,et al.Orally active Epac in⁃hibitor reverses mechanical allodynia and loss of in⁃traepidermal nerve fibers in a mouse model of chemotherapy-induced peripheral neuropathy[J].Pain,2018,159(5):884-893.
[23]Wahlman C,Doyle TM,Little JW,et al.Chemotherapy-induced pain is promoted by enhancedspinal adenosine kinase levels through astrocyte-dependent mechanisms[J].Pain,2018,159(6):1025-1034.
[24]Domingo IK,Latif A,Bhavsar AP.Pro-inflammatory signalling PRRopels cisplatin-induced toxicity[J].Inter⁃national Journal of Molecular Sciences,2022,23(13):7227.
[25]Fumagalli G,Monza L,Cavaletti G,et al.Neuroinflam⁃matory process involved in different preclinical models of chemotherapy-induced peripheral neuropathy[J].Frontiers in Immunology,2021,11:626687.
[26]Yehia R,Saleh S,Abhar H,et al.L-Carnosine protects against Oxaliplatin-induced peripheral neuropathy in colorectal cancer patients:A perspective on targeting Nrf-2 and NF-κB pathways[J].Toxicology and Applied Pharmacology,2019,365:41-50.
[27]Illias AM,Gist AC,Zhang H,et al.Chemokine CCL2 and its receptor CCR2 in the dorsal root ganglion con⁃tribute to oxaliplatin-induced mechanical hypersensitiv⁃ity[J].Pain,2018,159(7):1308-1316.
[28]Xu Y,Jiang Z,Chen X.Mechanisms underlying paclitaxel-induced neuropathic pain:Channels,inflam⁃mation and immune regulations[J].European Journal of Pharmacology,2022,933:175288.
[29]陈秀兰,刘淑娟,苏乌云,等.白蛋白结合型紫杉醇诱导大鼠神经病理性疼痛的作用机制[J].中国医科大学学报,2022,51(12):1102-1108.
[30]Luo X,Huh Y,Bang S,et al.Macrophage Toll-like re⁃ceptor 9 contributes to chemotherapy-induced neuro⁃pathic pain in male mice[J].J Neurosci,2019,39(35):6848-6864.
[31]Chukyo A,Chiba T,Kambe T,et al.Oxaliplatin-induced changes in expression of transient receptor po⁃tential channels in the dorsal root ganglion as a neuro⁃pathic mechanism for cold hypersensitivity[J].Neuropep⁃tides,2018,67:95-101.
[32]Adamek P,Heles M,Bhattacharyya A,et al.Dual PI3Kδ/γinhibitor duvelisib prevents development of neuropathic pain in model of paclitaxel-induced periph⁃eral neuropathy[J].The Journal of Neuroscience,2022,42(9):1864-1881.
[33]Wu Z,Wang S,Wu I,et al.Activation of TLR-4 to pro⁃duce tumour necrosis factor-alpha in neuropathic pain caused by paclitaxel[J].Eur J Pain,2015,19(7):889-898.
[34]Shang Y,Tang Y.The central cannabinoid receptor type-2(CB2)and chronic pain[J].International journal of neuroscience,2017,127(9):812-823.
[35]Li Y,Yin C,Li X,et al.Electroacupuncture alleviates paclitaxel-induced peripheral neuropathic pain in rats via suppressing TLR4 signaling and TRPV1 upregula⁃tion in sensory neurons[J].International Journal of Mo⁃lecular Sciences,2019,20(23):5917.
[36]Zhao Y,Yao M,Liu Q,et al.Electroacupuncture Treat⁃ment Attenuates Paclitaxel-Induced Neuropathic Pain in Rats via Inhibiting Spinal Glia and the TLR4/NF-κB Pathway[J].J Pain Res,2020,13:239-250.
[37]张虹,向宏春,贾珉,等.CB2受体参与电针抑制NLRP3炎性小体活化缓解紫杉醇化疗后神经病理痛机制[J].中华中医药杂志,2018,33(5):2103-2107.
[38]Zhang Y,Li A,Xin J,et al.Electroacupuncture allevi⁃ates chemotherapy-induced pain through inhibiting phosphorylation of spinal CaMKⅡin rats[J].European journal of pain,2018,22(4):679-690.
[39]Kim MJ,Lee JH,Jang JU,et al.The efficacy of combi⁃nation treatment of gabapentin and electro-acupuncture on paclitaxel-induced neuropathic pain[J].The Korean Journal of Physiology&Pharmacology,2017,21(6):657.
[40]Urru M,Muzzi M,Coppi E,et al.Dexpramipexoleblocks NaⅤ1.8 sodium channels and provides analgesia in multiple nociceptive and neuropathic pain models[J].Pain,2020,161(4):831-841.
[41]Heide R,Bostock H,Ventzel L,et al.Axonal excitabil⁃ity changes and acute symptoms of oxaliplatin treat⁃ment:In vivo evidence for slowed sodium channel inac⁃tivation[J].Clinical Neurophysiology,2018,129(3):694-706.
[42]Li Y,North RY,Rhines LD,et al.DRG voltage-gated sodium channel 1.7 is upregulated in paclitaxel-induced neuropathy in rats and in humans with neuro⁃pathic pain[J].J Neurosci,2018,38(5):1124-1136.
[43]Zhang XL,Cao XY,Lai RC,et al.Puerarin relieves paclitaxel-induced neuropathic pain:The role of NaⅤ1.8 beta1 subunit of sensory neurons[J].Front Phar⁃macol,2018,9:1510.
[44]Yen L,Hsieh C,Hsu H,et al.Targeting ASIC3 for re⁃lieving mice fibromyalgia pain:Roles of electroacupunc⁃ture,opioid,and adenosine[J].Scientific Reports,2017,7:46663.
[45]Liu S,Wang Z,Su Y,et al.A neuroanatomical basis for electroacupuncture to drive the vagal-adrenal axis[J].Nature,2021,598(7882):641-645.
后台-系统设置-扩展变量-手机广告位-内容正文底部 |
-
<< 上一篇
下一篇:没有了!